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Abstract. We employ new global space-based measurements
of atmospheric methanol from the Tropospheric Emission
Spectrometer (TES) with the adjoint of the GEOS-Chem
chemical transport model to quantify terrestrial emissions of
methanol to the atmosphere. Biogenic methanol emissions in
the model are based on version 2.1 of the Model of Emissions
of Gases and Aerosols from Nature (MEGANv2.1), using
leaf area data from NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) and GEOS-5 assimilated mete-
orological fields. We first carry out a pseudo observation test
to validate the overall approach, and find that the TES sam-
pling density is sufficient to accurately quantify regional- to
continental-scale methanol emissions using this method. A
global inversion of two years of TES data yields an optimized
annual global surface flux of 122 Tg yr−1 (including bio-
genic, pyrogenic, and anthropogenic sources), an increase of
60 % from the a priori global flux of 76 Tg yr−1. Global ter-
restrial methanol emissions are thus nearly 25 % those of iso-
prene (∼ 540 Tg yr−1), and are comparable to the combined
emissions of all anthropogenic volatile organic compounds
(∼ 100–200 Tg yr−1). Our a posteriori terrestrial methanol
source leads to a strong improvement of the simulation rel-
ative to an ensemble of airborne observations, and corrobo-
rates two other recent top-down estimates (114–120 Tg yr−1)

derived using in situ and space-based measurements. Inver-

sions testing the sensitivity of optimized fluxes to model er-
rors in OH, dry deposition, and oceanic uptake of methanol,
as well as to the assumed a priori constraint, lead to global
fluxes ranging from 118 to 126 Tg yr−1. The TES data imply
a relatively modest revision of model emissions over most of
the tropics, but a significant upward revision in midlatitudes,
particularly over Europe and North America. We interpret
the inversion results in terms of specific source types using
the methanol : CO correlations measured by TES, and find
that biogenic emissions are overestimated relative to biomass
burning and anthropogenic emissions in central Africa and
southeastern China, while they are underestimated in regions
such as Brazil and the US. Based on our optimized emissions,
methanol accounts for > 25 % of the photochemical source of
CO and HCHO over many parts of the northern extratropics
during springtime, and contributes∼ 6 % of the global sec-
ondary source of those compounds annually.

1 Introduction

Methanol is the most abundant non-methane organic com-
pound in the troposphere, and a precursor of carbon monox-
ide, formaldehyde, and ozone (Singh et al., 1995, 2001; Tie et
al., 2003; Millet et al., 2006; Duncan et al., 2007; Choi et al.,
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2010; Hu et al., 2011). Methanol is produced in plants dur-
ing cell wall growth (Fall, 2003), and appears to be emitted
by most land plants (Fall and Benson, 1996). As a result, bio-
genic emissions are thought to constitute the largest fraction
of the global methanol source (Millet et al., 2008a; Stavrakou
et al., 2011; Guenther et al., 2012). Emissions of methanol
thus represent an important chemical interaction between the
biosphere and atmosphere.

Other sources of atmospheric methanol include biomass
burning (Holzinger et al., 1999; Andreae and Merlet, 2001)
and anthropogenic emissions (Holzinger et al., 1999; de
Gouw et al., 2005; Hu et al., 2011), both minor terms in
the global budget that can be important on regional scales.
Methanol is also produced photochemically via peroxy rad-
ical permutation reactions (Tyndall et al., 2001), which pro-
vide a diffuse source most important in the remote atmo-
sphere (Lewis et al., 2005). Observations in the ocean mixed
layer imply that the marine biosphere is a large primary
source of atmospheric methanol, but an even larger gross sink
(Heikes et al., 2002; Williams et al., 2004; Carpenter et al.,
2004; Millet et al., 2008a; Yang et al., 2013). Photochemi-
cal oxidation by the hydroxyl radical (OH) is the other main
sink for atmospheric methanol, followed by dry deposition
to land. The overall atmospheric lifetime for methanol, ac-
counting for gross ocean uptake, OH, and deposition, is ap-
proximately 5–6 days (Millet et al., 2008b; Stavrakou et al.,
2011).

Due to sparse long-term surface observations, the magni-
tude and distribution of global methanol sources is poorly
constrained. Recent studies have found that current emission
inventories lead to significant spatial and temporal model bi-
ases relative to in situ and satellite observations. Millet et
al. (2008b) found that a net primary productivity- (NPP-)
based emissions scheme developed by Galbally and Kirs-
tine (2002), implemented in a chemical transport model
(GEOS-Chem CTM), led to a methanol overprediction over
the eastern US and the tropics that correlated with broadleaf
tree coverage. Stavrakou et al. (2011) used methanol col-
umn measurements from the Infrared Atmospheric Sound-
ing Interferometer (IASI) with the adjoint of the Intermedi-
ate Model for the Annual and Global Evolution of Species
(IMAGESv2) CTM to constrain biomass burning and bio-
genic methanol emissions globally. They found that the
Model of Emissions of Gases and Aerosols from Nature
(MEGANv2.1; Guenther et al., 2012) predicted biogenic
methanol emissions that were too high in the tropics and too
low in more arid regions, such as the western US, central
Asia, and northern Australia.

Hu et al. (2011) employed tall tower measurements in the
US Upper Midwest in combination with the GEOS-Chem
CTM to better understand the seasonal cycle of methanol
emissions. They showed that methanol concentrations sim-
ulated by GEOS-Chem, driven by MEGANv2.0, peaked a
month too late in summer compared to the observations (late
July vs. June). This led, in turn, to an underestimate of the

photochemical importance of methanol in early spring, when
methanol emissions are high but isoprene emissions are still
relatively low. Wells et al. (2012) used space-based measure-
ments from IASI and from the Tropospheric Emission Spec-
trometer (TES) to demonstrate that this seasonal bias mani-
fests across midlatitude ecosystems globally. They used the
IASI data to derive an optimized set of emission factors as a
function of leaf age, which resulted in higher emissions for
new and old leaves and reduced emissions from growing and
mature leaves relative to the standard MEGAN parameteri-
zation.

In this paper, we use a new two-year data set of space-
based tropospheric methanol observations from TES with the
adjoint of the GEOS-Chem CTM in a global inversion to
derive new constraints on terrestrial emissions of methanol.
The analysis builds on our previous work using satellite ob-
servations to characterize the seasonality of methanol emis-
sions in the extratropics (Wells et al., 2012) and on recent
efforts applying the IASI sensor to investigate global emis-
sion fluxes (Stavrakou et al., 2011). We employ an ensemble
of aircraft observations to evaluate the TES-derived emission
estimates, and interpret the results in terms of underlying
emission processes based on the methanol : CO correlations
measured by TES. Finally, we explore the impact of our a
posteriori methanol emissions on the photochemical produc-
tion of formaldehyde and carbon monoxide in the global tro-
posphere.

2 TES methanol observations

TES is an infrared Fourier transform spectrometer aboard
EOS Aura, which has a local Equator overpass time of 13:45
and a 5× 8 km2 footprint at nadir (Beer et al., 2001). The
first observations of methanol from TES were presented in
Beer et al. (2008), and a detailed description of the methanol
retrieval, sensitivity, and initial global results were given by
Cady-Pereira et al. (2012). Wells et al. (2012) evaluated the
TES retrievals using a suite of aircraft observations over
North America, and found the two data sets to be consis-
tent for retrievals with degrees of freedom for signal (DOFS)
> 0.5.

The methanol abundance is retrieved from TES measured
spectra in the band ranging from 1032.32 to 1034.48 cm−1

using an optimal estimation approach (Rodgers, 2000). The
retrieved methanol profile is related to the true profilex by

x̂ = xa+ A(x − xa) (1)

wherexa is the a priori profile andA is the averaging kernel
matrix. Most TES methanol retrievals have DOFS < 1.0, so
they contain at most one piece of information in the vertical.
Because of this, we collapse the retrieved methanol profile
into a single mixing ratio, called the representative volume
mixing ratio (RVMR; Shephard et al., 2011). The RVMR (ρ)

is a measure of the methanol concentration over the vertical
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range where TES is most sensitive, and is calculated from the
retrieved profile:

ρ = exp

[
nlev∑
i=1

log(x̂i)wi

]
, (2)

wherex̂i andwi are the retrieved mixing ratio and RVMR
weighting function at leveli. The weighting function is de-
rived from a transformation of the averaging kernel, and re-
duces to a vector in cases where the information content of
the retrieval is limited (DOFS < 1.0). The uncertainty of the
methanol RVMR generally ranges from 10 to 50 %. The sen-
sitivity of the retrieval to the true methanol profile peaks in
the lower troposphere, typically between 700 and 900 hPa
(Cady-Pereira et al., 2012), making the TES data suitable for
investigating surface emissions.

Here, we employ the GEOS-Chem 3-D CTM (see below)
to interpret two years of global methanol observations from
TES in terms of the constraints they provide on methanol
emission processes. We restrict the analysis to retrievals over
land and locations where the surface emissivity is greater
than 0.92, which results in 62 209 retrieved profiles from
2008 and 2009. The number of TES observations per GEOS-
Chem grid box (left panels) and their average DOFS (right
panels) are mapped in Fig. 1 for the full data record and for
the months of January and July. We see in Fig. 1a that TES
provides extensive data coverage in the tropics but relatively
few observations over North Africa, the Arabian Peninsula,
and much of Australia. The latter are desert regions where
the surface emissivity retrieval degrades in accuracy due to
a strong and variable silicate absorption feature between 800
and 1300 cm−1. Errors in the emissivity retrieval can over-
whelm the methanol signal over these areas. We also see in
Fig. 1a and b that the number of observations and their cor-
responding DOFS decrease towards the poles, particularly in
the Northern Hemisphere (NH). This mainly arises from the
sparsity of observations during wintertime (Fig. 1c). During
NH spring and summer, when methanol concentrations are
elevated and there is greater thermal contrast between the
land and atmosphere, we obtain more TES observations (and
increased DOFS) at higher latitudes (Fig. 1e–f).

To compare the simulated and measured methanol profiles
in the adjoint optimization, we sample the model at the time
and location of each TES observation, interpolate the model
profile to the TES vertical resolution, and apply the native
TES a priori and averaging kernel using Eq. (1). The model–
measurement difference is then used to compute the adjoint
forcing profile in the inversion, as described later.

Fig. 1. TES sampling frequency and degrees of freedom for signal
(DOFS) for methanol. Shown are the number of TES methanol ob-
servations in each 4◦ × 5◦ GEOS-Chem grid box, and the average
DOFS for those observations, during(A)–(B) all months of 2008–
2009;(C)–(D) January 2008 and 2009; and(E)–(F) July 2008 and
2009.

3 Methanol simulation in the GEOS-Chem CTM

GEOS-Chem (http://www.geos-chem.org) is a global, 3-D
model of atmospheric chemistry that uses GEOS-5 assim-
ilated meteorological data from the NASA Goddard Earth
Observing System. For this work we run the model at a hor-
izontal resolution of 4◦ × 5◦ and with 47 vertical levels ex-
tending to 0.01 hPa. Transport and emissions are calculated
on 30 and 60 min time steps, respectively.

Methanol sources and sinks are computed in the model,
following Millet et al. (2008b), with modifications de-
scribed in Wells et al. (2012). Specifically, terrestrial bio-
genic emissions are estimated using the MEGANv2.1 algo-
rithms (Guenther et al., 2012), with the seasonality in the
extratropics updated to provide better agreement with atmo-
spheric measurements (Wells et al., 2012), and using cli-
matological monthly leaf area indices (LAI) from MODIS
collection 5 (Yang et al., 2006). Biomass burning emissions
are calculated based on monthly output from the Global
Fire Emissions Database version 3 (GFEDv3; van der Werf
et al., 2010). The methanol air–sea flux calculation derives
the gas-phase and liquid-phase transfer velocities using the
parameterizations of Johnson et al. (2010) and Nightin-
gale (2000), respectively. Dry deposition of methanol in-
cludes reactive uptake by vegetation, as recommended by
Karl et al. (2010). The resulting annual methanol source
in our a priori simulation is 179 Tg yr−1, with 64 Tg yr−1
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from terrestrial plants, 36.5 Tg yr−1 from secondary pho-
tochemical production, 8 Tg yr−1 from biomass and bio-
fuel burning, and 4.5 Tg yr−1 from anthropogenic activities.
Gross methanol emissions from the ocean surface contribute
66 Tg yr−1, but annual gross ocean uptake of 73.5 Tg yr−1

results in a net ocean sink of 7.5 Tg yr−1. Other sinks in the
a priori simulation include oxidation by OH (70 Tg yr−1),
dry deposition to land (26 Tg yr−1), and wet deposition
(9.5 Tg yr−1).

For this work we run the model for year 2008, and use a
one-year spin-up to minimize any impact from initial condi-
tions. To increase data coverage, we then compare the model
output to TES retrievals for 2008 and 2009, under the as-
sumption that interannual variability is smaller than other
sources of model error (globally, terrestrial fluxes differ by
less than 1 % for the two years in the a priori simulation).

Figure 2 maps the terrestrial methanol emissions for De-
cember, January, and February (DJF) and June, July, and Au-
gust (JJA) in the GEOS-Chem a priori simulation. Fluxes are
high in the tropics, where emissions from terrestrial plants
and biomass burning peak, and in the northern midlatitudes
during the summer growing season. Our a priori emission es-
timate for terrestrial plants in 2008 is∼ 35 % lower than the
99.6 Tg yr−1 reported by Guenther et al. (2012) for the year
2000, likely due primarily to the use of differing LAI and me-
teorological drivers. Maps of terrestrial biogenic emissions in
the GEOS-Chem a priori simulation are shown in Fig. S1 (for
DJF and JJA).

4 GEOS-Chem adjoint

We carry out an inverse analysis to quantitatively constrain
global terrestrial methanol emissions on the basis of the TES
data. The method involves minimizing a scalar cost function,
J (p), that quantifies the error weighted misfit of the model to
the TES observations while accounting for prior knowledge:

J (p) =

∑
cε�

(H(c) − y)T S−1
y (H(c) − y)

+ γ (p − pa)
T S−1

a (p − pa). (3)

Here,p is the vector of parameters (in our case, scale fac-
tors for terrestrial emissions) to be optimized,pa is their ini-
tial (a priori) value,y is a set of observations (in our case,
TES methanol profiles),c is a vector containing the model-
simulated concentrations,H is an observation operator map-
ping from the model space to the observation space,Sy and
Sa are the observational and a priori emissions error covari-
ance matrices, and� is the time and space domain of the
observations. We also include aγ term to help regularize the
solution to this problem, given a lack of complete knowledge
of the error statistics of the a priori emissions (Hansen, 1998).
The maximum a posteriori solution forp is then given by the
solution to min(J (p)).

Fig. 2. December, January, February (DJF, top) and June, July, Au-
gust (JJA, bottom) terrestrial methanol emissions in the GEOS-
Chem a priori simulation (year 2008) from anthropogenic activities,
biomass burning, biofuel burning, and terrestrial biota.

For this work we use the GEOS-Chem adjoint to solve
for min(J (p)). The model adjoint computes the gradient of
J (p) with respect to methanol emissions, and employs a
quasi-Newtonian optimization routine to iteratively converge
to ∇pJ (p) = 0 (Zhu et al., 1994; Byrd et al., 1995). Previ-
ous applications of the GEOS-Chem adjoint have included
inverse modeling and sensitivity studies focused on aerosols
(Henze et al., 2009; Kopacz et al., 2011; Wang et al., 2012),
CO (Kopacz et al., 2009, 2010), NH3 (Zhu et al., 2013), and
O3 (Zhang et al., 2009; Parrington et al., 2012), with ad-
ditional studies developing complete error covariance con-
straints (Singh et al., 2011) and quantifying the impact of
model error on inverse calculations (Jiang et al., 2011, 2013).

Our optimization employs two years of TES methanol
profiles to derive terrestrial emissions at 4◦

× 5◦, includ-
ing the sum of contributions from anthropogenic activi-
ties, biofuel and biomass burning, and terrestrial plants. The
TES data have greater coverage over the tropics (Fig. 1).
Since the seasonal cycle of extra-tropical emissions in the
model is already well constrained based on our earlier work
(Wells et al., 2012) and TES data coverage is more limited
at high latitudes, we perform here a seasonal inversion in
the tropics (December–February, March–May, June–August,
and September–November; hereafter DJF, MAM, JJA, and
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Fig. 3. Example of a TES methanol retrieval and corresponding
adjoint forcing.(A) Retrieved methanol profile (black line), with
the a priori profile (red line), the GEOS-Chem model profile with
the TES a priori and averaging kernel applied (green line), and the
TES representative volume mixing ratio (RVMR, black symbol).
The shaded bar indicates the vertical range over which the RVMR
applies, corresponding to the full width at half-maximum of the
averaging kernel peak.(B) Rows of the averaging kernel for this
retrieval, which has 0.78 degrees of freedom for signal (DOFS).
(C) The corresponding adjoint forcing (∇pJ (p) for this example.

SON, respectively), defined as 23.5◦ S to 23.5◦ N, and an an-
nual inversion in the extratropics. We exclude retrievals over
oceans, as these tend to have limited information content due
to weak thermal contrast and low methanol abundance. The
optimization routine bounds the solution so that the opti-
mized emission scale factors are not less than zero, and the a
priori emissions are assumed to have an uncertainty of 100 %
(with γ = 0.5).

The observational error is calculated from the native TES
instrument noise error covariance matrix (diagonal elements
only); we apply a minimum threshold of 0.5 ppb for this er-
ror as this corresponds to the TES limit of detection for the
methanol RVMR (Cady-Pereira et al., 2012). We add to this
an assumed 20 % CTM error following Millet et al. (2012).
An example of a TES retrieved profile, model profile (with
TES averaging kernel and a priori profile applied), TES av-
eraging kernel, and the corresponding adjoint forcing profile
(∇pJ (p)) with respect to the a priori emissions are shown in
Fig. 3. The adjoint forcing in this case is strongest around
600 hPa, and is negative as the model concentrations are
lower than the retrieved values for this example.

5 Pseudo observation test of the adjoint method

We performed a sensitivity analysis using pseudo obser-
vations to determine the spatial resolution at which the
TES data can be expected to constrain surface emissions of
methanol. The GEOS-Chem methanol fields were sampled
according to the temporal and spatial sampling density of the
two-year TES data set, and the native TES a priori profiles
and averaging kernels then applied to the model output us-
ing Eq. (1) to generate pseudo-TES observations. We then
carried out two global adjoint inversions using these pseudo-
TES observations: one with the a priori estimate for terres-
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Figure 4. Cost function evolution for the adjoint optimization using TES observations, plotted as 2	
  

the ratio of the final (Jf) to initial (Ji) value for each iteration. 3	
  

Fig. 4. Cost function evolution for the adjoint optimization using
TES observations, plotted as the ratio of the final (Jf) to initial (Ji)

value for each iteration.

Table 1.Pseudo observation analysisa.

Regionb Derived:actual emissions

North America 0.97, 1.01
South America 0.98, 1.00
Central/Southern Africa 0.99, 1.00
Europe 0.98, 1.01
Southeast Asia/India 0.97, 1.01
Siberia 0.99, 1.01
Indonesia/Oceania 0.96, 1.03

aA posteriori annual terrestrial emissions are shown normalized to the
actual emissions prescribed for the test inversion. The two numbers
listed correspond to separate tests in which the a priori emissions were
decreased (0.5×) and increased (1.5×), respectively, relative to the
actual values.bRegions are as outlined in Fig. S4.

trial emissions perturbed downward (0.5×) from their actual
values, and one with the estimate perturbed upward (1.5×).
The native TES noise error for each corresponding pseudo
observation was used as the observational error covariance
matrix in each test. Ideally, the adjoint optimization would
be able to recover the actual model emissions in each grid
square; the degree to which this is not the case provides a
measure of the uncertainty arising from the TES data cover-
age.

Figures S2 and S3 show the a posteriori emission scale fac-
tors for these test inversions. For both tests, there are a few
model grid boxes with optimized scale factors that are higher
or lower than 1.0, showing that the TES data sampling pro-
vides some limitation on our ability to retrieve emissions for
any individual grid box. On the other hand, when we aggre-
gate to larger regions, we find that the derived emissions are
robust. Table 1 lists the optimized emissions, normalized by
their true values and averaged over continental-scale regions
(with boundaries as in Fig. S4). At this scale, the retrieved
emissions for all regions are within 5 % of the actual values.
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Fig. 5. Scale factors for the a priori terrestrial methanol emis-
sions optimized on the basis of the TES observations.(A) Annual
scale factors for the extratropics.(B)–(E) Seasonal scale factors for
the tropics (DJF= December, January February; MAM= March,
April, May; JJA= June, July, August; SON= September, October,
November).

In the following section, we use these same regions for
interpreting the terrestrial methanol emissions derived from
the actual TES measurements.

6 Optimized methanol sources

Figure 4 shows the evolution of the cost function during the
optimization of terrestrial methanol emissions using the ac-
tual TES observations, and Fig. 5 shows the corresponding
scale factors for the a priori emission estimates. We converge
on a solution after approximately 26 iterations, at which point
additional iterations change the cost function by less than
0.5 %. The a posteriori cost function is reduced by∼ 34 %
compared to the a priori value.

Figure 5 reveals some coherent and informative spatial
patterns. Several of the regions where emissions are re-
vised significantly upward are semi-arid, such as the western

Fig. 6.A posteriori error estimate for the optimized methanol emis-
sions (a priori error= 1.0, i.e., 100 %).(A) Annual a posteriori
error for the extratropics.(B)–(E) Seasonal a posteriori error for
the tropics (DJF= December, January February; MAM= March,
April, May; JJA= June, July, August; SON= September, October,
November).

US and Mexico, the Iberian Peninsula, the Sahel, and cen-
tral Asia. This is consistent with the findings of Stavrakou
et al. (2011), who used IASI methanol retrievals to test
MEGANv2.1 biogenic emissions in the IMAGESv2 model.

The optimization also leads to increased emission esti-
mates for the eastern US, western Canada, eastern Africa,
and South Africa. Emissions from Brazil are revised upward
during SON. A particular region where emissions are scaled
downward is central Africa (especially in JJA); emissions are
also reduced in southeastern China, southeastern Russia, and
portions of tropical South America.

We saw based on the pseudo-observation analysis in the
previous section that the inversion is more robust across
regional scales than it is for individual grid boxes. Fig-
ure 6 maps the a posteriori uncertainties for the actual in-
version (calculated using a preconditioned BFGS algorithm;
Bousserez et al., 2013), providing a more nuanced picture of
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the spatial constraints afforded by the optimization. We see
in Fig. 6 that the a priori error is reduced by at least half
throughout most of the northern midlatitudes, and by over
70 % in much of Europe, Russia, East Asia, central Africa,
North America, and Brazil (in SON). The DOFS for our in-
version (which indicate the number of independently con-
strained emission variables) are 696.

Table 2 lists our optimized terrestrial methanol emission
estimates for continental-scale regions around the world. Al-
though there are parts of the tropics where emissions are
reduced relative to the a priori estimate (Fig. 5), when ag-
gregated to continental scales the a posteriori emissions
are uniformly higher than the a priori. The global terres-
trial methanol emission flux increases by 60 % in the in-
version, from 76 to 122 Tg yr−1 for the 2008–2009 period.
This revised estimate supports two other recent top-down es-
timates of the global terrestrial methanol source: 114 Tg yr−1

for 2009 (Stavrakou et al., 2011) and 120 Tg yr−1 for 2004
(Millet et al., 2008a). Including gross ocean emissions of
66 Tg yr−1 and secondary photochemical production totaling
36.5 Tg yr−1, the total global methanol source increases by
25 % as a result of the inversion. Relative emission increases
are highest over Europe and North America (128–155 % in-
crease over the a priori emissions) followed by Southeast
Asia/India, Indonesia/Oceania, and Siberia. The smallest rel-
ative changes occur over central/Southern Africa and South
America (Table 2).

Figure 7 shows TES RVMR annual time lines, averaged
over 2008–2009 for the continental-scale regions mapped in
Fig. S4. We also show time lines for Brazil and central Africa
(with outlines as indicated by the green boxes in Fig. S4) to
better assess the impact of the seasonal optimization in the
tropics. Since the adjoint inversion was driven by the TES
data, these comparisons are not an independent validation of
the results, but instead provide a regional and seasonal com-
parison of the a priori and a posteriori simulations. Note that
the optimization employed the full TES profile rather than
just the RVMR values summarized in Fig. 7.

As we see in Fig. 7, the optimized simulation achieves sig-
nificantly better agreement with the TES observations across
these different global regions. The spring/summer model un-
derestimate is reduced from∼ 35 to ∼ 10 % over Europe,
from ∼ 40 to ∼ 15 % over North America, and from∼ 30
to ∼ 10 % over Siberia. Over South America, the bias is re-
duced from∼ 30 to 20 % in SON. Some larger discrepancies
do persist. The simulated methanol RVMRs over Southeast
Asia/India, central/South Africa, and Indonesia/Oceania are
still somewhat underestimated in the optimized simulation
throughout the year (by 20–30 %), and wintertime concen-
trations are underestimated over North America, Europe, and
Siberia (by 30–50 %). The latter behavior is probably due to
the limited number of successful TES observations at high
latitudes in wintertime. The rest of the seasonal cycle is well
represented in the extratropical regions, supporting the up-
dated seasonal cycle of methanol emissions derived by Wells
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Figure 7. Timelines of monthly-mean representative volume mixing ratio (RVMR) as measured 2	
  

by TES (black) and simulated by GEOS-Chem, averaged over the regions in Fig. S4. The vertical 3	
  

black lines correspond to the ±95% confidence interval of the TES monthly means. The red line 4	
  

Fig. 7. Time lines of monthly-mean representative volume mixing
ratio (RVMR) as measured by TES (black) and simulated by GEOS-
Chem, averaged over the regions in Fig. S4. The vertical black lines
correspond to the±95 % confidence interval of the TES monthly
means. The red line is the a priori GEOS-Chem simulation, and the
green line is the a posteriori simulation with optimized terrestrial
sources.

et al. (2012) that is used here, and the use of an annual inver-
sion in these regions. In the tropics, the optimized simulation
is better able to capture both the seasonal cycle and magni-
tude of observed methanol concentrations than is the a priori
simulation.

7 Sensitivity analyses

Although we have included only terrestrial emissions in our
state vector for optimization, other model processes, such as
the methanol loss rate, might also contribute to the observed
model–measurement discrepancies. In particular, a body of
recent research has pointed to large inconsistencies be-
tween simulated and measured OH levels over high-isoprene,
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Table 2.Optimization of terrestrial methanol emissions based on the TES measurements.

Regiona A priori A posteriori Dep test Ocean tests Alt OH p3OH γ tests
(Tg yr−1) (Tg yr−1)b (Tg yr−1)c (Tg yr−1)d (Tg yr−1)e (Tg yr−1)f (Tg yr−1)g

North America 8.0 18.2 17.5 18.6, 17.5 18.9 – 17.9, 18.0, 17.8
South America 16.0 19.7 18.8 20.4, 18.4 18.4 – 19.3, 19.4, 19.1
Central/Southern Africa 22.5 28.1 26.9 28.6, 27.0 27.1 – 27.7, 27.8, 27.6
Europe 5.1 13.0 12.6 13.2, 12.2 13.3 – 12.5, 12.7, 12.3
Southeast Asia/India 14.0 25.4 24.3 25.9, 24.1 26.4 – 24.6, 24.8, 24.3
Siberia 3.5 5.3 5.1 5.3, 5.2 5.6 – 5.2, 5.3, 5.2
Indonesia/Oceania 6.0 9.1 8.9 9.8, 7.9 8.3 – 8.6, 8.7, 8.3
Brazil 5.7 6.3 6.0 6.5, 6.1 5.9 8.3 6.4, 6.4, 6.4
Central Africa 8.4 5.2 4.7 5.1, 5.5 5.1 6.7 5.4, 5.4, 5.6
Global 76 122 118 125, 115 126 – 119, 120, 118

aRegions are as outlined in Fig. S4.bBaseline inversion using standard model chemistry.cTest inversion using alternate dry deposition sink (see text).dSensitivity tests on
the oceanic source/sink. The two numbers listed correspond to assumed seawater methanol concentrations of 70 nM and 166 nM, respectively.eTest inversion using
alternate global OH fields (see text).fp3OH is a parameterization that approximates the effects of OH recycling in high-isoprene, low-NOx environments (see text).
gSensitivity tests of the a priori constraint. The three numbers listed correspond to fluxes derived usingγ -values of 1.0, 0.01, and 0, respectively.

low-NOx environments such as tropical forests (Lelieveld et
al., 2008; Kubistin et al., 2010; Pugh et al., 2010; Stone et al.,
2011). We performed a suite of sensitivity runs to assess the
degree to which such uncertainties in model OH are likely to
affect our derived emission fluxes. First, we repeated the in-
version using global oxidant fields from a different version of
GEOS-Chem, corresponding to a 6.4 % lower global OH bur-
den than the standard simulation (Millet et al., 2012). Next,
we implemented a parameterization (denoted p3OH) that has
been proposed by Stone et al. (2011) to approximate OH re-
cycling during isoprene oxidation under low-NOx conditions
(assuming that 3.0 OH radicals are produced for each OH
radical lost to isoprene).

Table 2 gives a summary of the inversion results for these
sensitivity runs. The a posteriori emissions are very similar
for the inversions using the two alternate OH fields derived
using standard model isoprene chemistry. The OH recycling
tests do impact the optimized fluxes to a degree in the tropics.
Over central Africa, optimized emissions for the p3OH simu-
lation are 29 % higher than they are when the standard model
chemistry is used in the inversion. Over Brazil, optimized
emissions are about 32 % higher for the p3OH simulation.

Mao et al. (2012) argue that, to some extent, measurement
uncertainties may have contributed to reported observation-
model OH discrepancies in forest atmospheres. As such, we
take the p3OH parameterization as an OH-recycling upper
limit, and conclude that current uncertainties in low-NOx iso-
prene chemistry likely lead to at most a 30 % uncertainty
in our derived tropical methanol emissions. Likewise, Ta-
ble 2 shows that use of the alternate global OH fields leads
to at most a 10 % change in our derived continental-scale
methanol emission fluxes.

We also assessed the sensitivity of our results to model
treatment of the two other major methanol sinks: dry depo-
sition to land surfaces and oceanic uptake. In the first case,

we reduced the reactive uptake coefficient for methanol from
1.0 to 0.5 (Karl et al., 2010) and repeated the inversion. This
slightly reduced the optimized emissions nearly everywhere
due to the diminished deposition sink. Changes were largest
over central Africa (∼ 10 %, due to the dense vegetation in
this region); all other regions exhibited changes of less than
5 %.

For the oceanic uptake test, we varied the assumed
methanol seawater concentration in the model (118 nM) by
±41 %, based on the standard deviation of observed values
from Williams et al. (2004). This is also broadly similar to the
range of variability measured recently by Beale et al. (2013).
We find that assuming a seawater methanol concentration
of 70 nM increases the estimated net global oceanic sink to
∼ 15 Tg yr−1; an assumed concentration of 166 nM leads to
a global oceanic source and sink that are roughly in balance.
These net global fluxes are both within the range of recent
estimates (Millet et al., 2008a; Stavrakou et al., 2011; Beale
et al., 2013; Yang et al., 2013). Inversions carried out under
these two scenarios lead to optimized emissions that differ
from the base case by less than 5 % in regions outside the
tropics, but by up to 15 % over Indonesia/Oceania. Model as-
sumptions related to the air–sea exchange of methanol thus
have a larger impact on the inversion in regions with terres-
trial emissions in close proximity to the ocean.

We also tested the extent to which our a priori constraint
impacts the optimized emissions. In addition to the base-
line inversion with γ = 0.5 (and overall a priori uncer-
tainty= 100%), we performed three sensitivity inversions
with the regularization parameter set to 1.0, 0.01, and 0.
The first two values correspond to overall a priori uncer-
tainties of∼ 70 % and∼ 700 %, respectively, while the third
case contains no a priori constraint. The results indicate that
our continental-scale emission fluxes are robust to assump-
tions regarding the a priori constraint. Indonesia/Oceania and
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central Africa exhibit the greatest sensitivity, with the a pos-
teriori continental emissions differing by∼ 8–10% between
the baseline analysis and the no-constraint case; all other re-
gions exhibit changes of 5 % or less.

8 Evaluation of optimized methanol sources using
aircraft data

In this section we use an ensemble of in situ measurements
from recent aircraft campaigns to evaluate our new top-down
estimates of terrestrial methanol emissions derived using
TES. The aircraft campaigns include the International Trans-
port and Chemical Transformation of Anthropogenic Pollu-
tion, ITCT-2K2 (2002; Parrish et al., 2004) and ITCT-2K4
(2004; Fehsenfeld et al., 2006); Megacity Initiative: Local
and Global Research Observations, MILAGRO (2006; Singh
et al., 2009); Intercontinental Transport Experiment-Phase
B, INTEX-B (2006; Singh et al., 2009); the second Texas
Air Quality Study, TexAQS-II (2006; Parrish et al., 2009);
Arctic Research of the Composition of the Troposphere from
Aircraft and Satellites, ARCTAS (2008; Jacob et al., 2010);
and Aerosol, Radiation, and Cloud Processes affecting Arc-
tic Climate, ARCPAC (2008; Brock et al., 2011). Because the
TES observations employed here are for 2008 and 2009, we
compare the aircraft data to a priori and a posteriori model
simulations for 2008 sampled at the time-of-year and loca-
tion of the aircraft observations.

Figure 8 shows campaign-average vertical profiles of
methanol over land, measured aboard the aircraft and sim-
ulated by GEOS-Chem before and after optimization. The
a priori emissions result in a significant model underesti-
mate across North America, particularly in the boundary
layer. The optimization leads to a strong improvement in
the model–measurement comparisons across the ensemble
of campaigns, with the observed profiles generally well-
captured in the a posteriori simulation. In a few locations, the
low bias is not entirely removed by the inversion. In partic-
ular, elevated boundary layer concentrations measured over
the western US during INTEX-B and ARCTAS are not cap-
tured by the model. These campaigns both featured sampling
over the California Central Valley and the Los Angeles area,
where recent studies have found very high boundary layer
concentrations of methanol (Warneke et al., 2010). High al-
cohol emissions from agricultural processes such as the fer-
mentation of livestock feed have also been reported in this
region (Howard et al., 2010; Malkina et al., 2011). Likewise,
a residual low model bias is seen relative to the TexAQS-II
measurements over Houston and the MILAGRO-C130 ob-
servations over and near Mexico City, probably because the
flight data are heavily influenced by individual plumes that
are not resolved at the 4◦

× 5◦ model resolution. The DC8
observations during MILAGRO, representing more regional-
scale outflow from Mexico City, are in good agreement with
the optimized simulation. The ARCTAS measurements over

Fig. 8. Vertical profiles of methanol concentrations over North
America. Each profile represents a campaign average over the re-
gion specified in the panel. Aircraft measurements are shown in
black with the±95 % confidence limits for each vertical bin indi-
cated by the horizontal bars. The red line is the a priori GEOS-Chem
simulation, and the green line is the GEOS-Chem simulation after a
posteriori scaling factors have been applied.

Canada are overestimated by the optimized simulation within
the boundary layer, but the two are in good agreement aloft.

Figure 9 shows marine methanol profiles for the above
campaigns in which there was significant sampling over
ocean. As before, the source optimization significantly im-
proves the model agreement with the aircraft measurements
throughout the vertical profile. The high free tropospheric
methanol concentrations observed during INTEX-B over
the eastern Pacific (C130 aircraft) are not captured by the
model. A similar discrepancy was also noted by Stavrakou
et al. (2011) relative to the IMAGESv2 CTM following
an inversion using IASI data. Uncertainties in the Pacific
source/sink of methanol could play a role here. On the other
hand, our a posteriori simulation agrees well with other data
sets over the Pacific and the Atlantic Oceans (Fig. 9), captur-
ing the abundance of methanol for continental inflow to and
outflow from North America.

9 Characterizing source contributions based on TES
methanol : CO correlations

Our adjoint inversion optimized terrestrial methanol emis-
sions as the sum of contributions from biogenic, biomass
burning, and anthropogenic sources. In this section, we
use methanol : CO correlations measured by TES to help
interpret our inversion results in terms of specific source
contributions. We select for the analysis regions that
show significant differences between the a posteriori and
a priori methanol emission estimates (Fig. S4). For the
TES observations within each of the selected regions, we
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Fig. 9. Vertical profiles of methanol concentrations over ocean.
Each profile represents a campaign average over the region spec-
ified in the panel. Aircraft measurements are shown in black with
the±95 % confidence limits for each vertical bin indicated by the
horizontal bars. The red line is the a priori GEOS-Chem simulation,
and the green line is the GEOS-Chem simulation after a posteriori
scaling factors have been applied.

Fig. 10. Extratropical methanol : CO correlations as measured by
TES during June–August. Regions are as outlined in Fig. S4. The
TES CO RVMR is calculated by applying the TES methanol RVMR
weighting function to the retrieved CO profile. Slopes are calculated
using reduced major axis regression.

construct a methanol : CO correlation using methanol RVMR
values and CO pseudo-RVMR values. The latter are com-
puted by applying the TES RVMR weighting function for
methanol to the corresponding retrieved CO profile using
Eq. (2); this approach ensures consistent vertical weighting
for both CO and methanol.

Figure 10 shows methanol : CO correlations measured by
TES over the western US, eastern US, western Europe, and
southeastern China (region boundaries are given in Fig. S4).

Fig. 11. Seasonality of methanol emissions from anthropogenic
(blue), biomass burning (pink), and biogenic sources (cyan) in the
GEOS-Chem a priori simulation for the regions in Fig. S4.

Data are shown for June–August, corresponding to the sea-
sonal peak in methanol concentrations in the NH extrat-
ropics, and include all retrievals with DOFS > 0.5. As we
see from Fig. 5, the TES inversion leads to an upward re-
vision of emissions for the western US, eastern US, and
Europe, and a downward revision for southeastern China.
The methanol : CO slopes are similar for the eastern US and
western Europe (0.051–0.052 ppb ppb−1), and both are lower
than is observed over the western US (0.073 ppb ppb−1).
However, all three values are significantly higher than the
enhancement ratios typically associated with anthropogenic
emissions (∼ 0.012 mol mol−1; Goldan et al., 1995; de Gouw
et al., 2005; Millet et al., 2005; Warneke et al., 2007), and
this is consistent with the predominance of biogenic sources
in the model for these regions during summer (Fig. 11). The
higher slope over the western US suggests an anomalously
large methanol source relative to the amount of co-emitted
(or co-located) CO fluxes. The increased a posteriori emis-
sions for this region could thus reflect the presence of plant
species that emit large quantities of methanol, or a missing
source from agriculture.

Over southeastern China, where the inversion leads to
decreased emissions (Fig. 5), the methanol : CO slope is
much lower (0.024 ppb ppb−1), and closer to what would
be expected for predominantly anthropogenic emissions. In
contrast, the a priori methanol emissions over this region
(Fig. 11) are mostly biogenic during the spring and summer
months; it thus appears that the biogenic source for this re-
gion is overestimated.
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Fig. 12.Tropical methanol : CO correlations as measured by TES. Regions are as outlined in Fig. S4. The TES CO RVMR is calculated by
applying the TES methanol RVMR weighting function to the retrieved CO profile. Slopes are calculated using reduced major axis regression.

Figure 12 shows the seasonal progression of
methanol : CO correlations measured by TES over Brazil
and central Africa, tropical regions where we expect a
contribution from both biogenic and pyrogenic sources.
Over central Africa we see a distinct seasonal variation in
the methanol : CO slopes, with lower values in JJA and DJF
(0.017–0.023 ppb ppb−1) compared to the other seasons
(0.026–0.042 ppb ppb−1). DJF and JJA correspond to the
biomass burning seasons for this region (Fig. 11), and
the observed slopes are in line with typical methanol : CO
emission ratios for biomass burning (Andreae and Merlet,
2001). Therefore, it appears that biomass burning is a pre-
dominant contributor to atmospheric methanol over central
Africa during these seasons. On the other hand, the a priori
emissions employed in GEOS-Chem (Fig. 11) assume that
the biogenic flux is dominant year-round. The a posteriori
source reduction for this region, seen in Fig. 5, thus probably
reflects an overestimate of biogenic, rather than biomass
burning, emissions.

Over Brazil, biomass burning peaks in August–September
(Fig. 11) and is not associated with a minimum in the
observed methanol : CO slope (Fig. 12). Instead, the slope
slowly increases throughout the year. This may simply re-
flect the seasonality of biogenic emissions, with fire emis-
sions playing a more modest role for this region, which is
broadly consistent with the a priori information (Fig. 11).

10 Impact of methanol on global photochemical
production of CO and HCHO

Photochemical oxidation of methanol is a source of atmo-
spheric HCHO and CO, two compounds that play impor-
tant roles in the chemistry of OH and ozone (Logan et al.,
1981; Crutzen and Zimmermann, 1991), and which serve
as useful tracers for estimating anthropogenic, biogenic, and
biomass burning emissions of other species (Suntharalingam

et al., 2004; Warneke et al., 2007; Barkley et al., 2008; Mil-
let et al., 2008b). Sources of HCHO and CO include pri-
mary emissions and secondary production from volatile or-
ganic compounds, including methane, isoprene, methanol,
and other biogenic and anthropogenic species. In the case
of CO, primary and secondary sources are thought to be of
globally similar magnitude (Duncan et al., 2007), whereas
secondary production is the predominant source of HCHO
(Fortems-Cheiney et al., 2012). In both cases, identifying the
key precursors is important for quantitative interpretation of
the ambient concentrations. In this section, we apply a full-
chemistry GEOS-Chem simulation for 2008 to quantify the
global importance of methanol as a source of CO and HCHO.

Figure 13 shows the total column secondary CO produc-
tion for February, April, June, August, October, and Decem-
ber 2008, along with the percent contribution from methanol
oxidation. In the optimized simulation, methanol accounts
for ∼ 6 % of global CO and HCHO production. Methanol
is an important source of CO and HCHO during spring and
early summer in the Northern Hemisphere, when biogenic
emissions of methanol are high but isoprene emissions are
still fairly low. During April, methanol contributes up to 25 %
of the secondary CO and HCHO in northern midlatitudes.
During June it contributes up to∼ 50 % of the local CO and
HCHO production in boreal regions, reflecting the later on-
set of the growing season at higher latitudes. Over the US
Upper Midwest, we find that the maximum contribution of
methanol to CO and HCHO production is∼ 25 %, occurring
in June, which is close to the value of 20 % estimated on
the basis of tower measurements by Hu et al. (2011). During
other months, methanol can contribute up to 10–15 % of sec-
ondary CO and HCHO production, depending on the region.
Over high isoprene emitting areas of the tropics, the frac-
tional contribution of methanol to CO and HCHO produc-
tion is modest (0–5 %). Downwind over tropical oceans, the
contribution increases (10–20 %) due to methanol’s longer
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Fig. 13. Importance of methanol as a photochemical precursor
of CO and HCHO. Left column: column-integrated photochem-
ical production of CO. Right column: percent contribution from
methanol oxidation in the GEOS-Chem a posteriori simulation for
February, April, June, August, October, and December 2008. The
fractional contribution to HCHO production is similar, since almost
all photochemical production of CO goes through HCHO.

lifetime compared to isoprene (several days vs. an hour or
less).

11 Summary and conclusions

We used two years of new atmospheric methanol observa-
tions from the Tropospheric Emission Spectrometer (TES)
in an adjoint inversion with the GEOS-Chem CTM to quan-
tify terrestrial emissions of methanol around the globe. A test
inversion based on pseudo observations demonstrated that
the TES data coverage is sufficient to accurately constrain
methanol emissions on regional-to-continental scales. A pos-
teriori uncertainties are reduced significantly compared to the
a priori, and are reduced by a factor of two or more through-

out most of the northern midlatitudes as well as over East
Asia and parts of central Africa and Brazil. Uncertainties
are higher over Indonesia/Oceania and high latitude regions,
where TES retrievals are limited.

The TES data show that current terrestrial emissions of
methanol in GEOS-Chem (driven by a modified implemen-
tation of MEGANv2.1 biogenic emissions) are too low, and
that the global flux should be increased by 60 % from 76
to 122 Tg yr−1. This optimized source is∼ 23 % of the es-
timated global isoprene flux (535 Tg yr−1; Guenther et al.,
2012) and is similar to the combined flux of all anthropogenic
volatile organic compounds (estimated at 100–200 Tg yr−1;
Müller, 1992; Piccot et al., 1992; van Aardenne et al., 2001).
We find that the largest relative increases to the a priori
emissions occur over mostly semi-arid regions such as the
western US, Mexico, the Iberian Peninsula, the Sahel, and
central Asia. The largest absolute emission increases occur
over Mexico and western Europe. Emissions are reduced
over southeastern China and over central Africa. The op-
timized emissions lead to a significant improvement in the
methanol simulation as compared to an ensemble of aircraft
measurements, though discrepancies over the western US
point to missing sources in the a priori inventory (and pos-
sibly issues with sampling mismatches between the model
and the aircraft measurements). Our optimized global terres-
trial methanol flux of 122 Tg yr−1 also supports two other
recent top-down estimates derived using in situ (Millet et al.,
2008a) and space-based (Stavrakou et al., 2011) observations
(114–120 Tg yr−1).

We carried out two separate sensitivity tests to assess the
degree to which our derived methanol emission fluxes de-
pend on uncertainties in model OH. An inversion that em-
ployed OH concentrations from an alternate model version
led to only minor differences (< 10 %) in the a posteriori
continental fluxes compared to the baseline analysis. A sec-
ond sensitivity analysis that employed a parameterization to
approximate OH recycling during isoprene oxidation at low
NOx indicated that uncertainties in low-NOx isoprene chem-
istry most likely lead to at most a 30 % bias in our computed
tropical methanol fluxes.

We also performed sensitivity tests to assess the impact of
model errors related to methanol dry deposition and air–sea
exchange. Varying the efficiency of reactive uptake generally
led to changes of less than 5 % in the regional a posteriori
emissions. Likewise, varying the assumed concentration of
methanol in the surface ocean by±41 % also led to a pos-
teriori emission differences of less than 5 % outside of the
tropics. In tropical island regions, where terrestrial emissions
occur in close proximity to the ocean, emissions varied by
about 15 %. Global fluxes from all sensitivity runs ranged
from 118 to 126 Tg yr−1.

Since our inversion optimized the total terrestrial emis-
sion flux and did not attempt to resolve individual sources,
we employed the methanol : CO correlations measured by
TES to interpret the a posteriori results and improve our
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understanding of the underlying emission processes. These
observations suggest that biogenic methanol emissions are
currently underestimated over the US, western Europe, and
Brazil in our implementation of MEGANv2.1. Over the
western US, the majority of methanol emissions appear to
be from sources that do not co-emit CO, suggesting high
emissions from plant functional types in this region or miss-
ing sources from agriculture. An overestimate of biogenic
emissions is apparent over southeastern China and cen-
tral Africa during June–August, as the corresponding TES
methanol : CO slopes are consistent with a predominant role
for anthropogenic and biomass burning emissions, respec-
tively.

The source optimization presented here demonstrates the
importance of methanol as a photochemical precursor of CO
and HCHO. Based on a full-chemistry GEOS-Chem simula-
tion, we estimate that methanol contributes 6 % to the global
secondary source of CO and HCHO, and up to∼ 50 % to
local photochemical production of CO and HCHO in boreal
regions in June, when methanol emissions are elevated but
isoprene emissions are low.

Future work involving the full record of methanol ob-
servations from TES and other space-based instruments,
such as the IASI sensors aboard the MetOp series of satel-
lites and possibly CrIS (Cross-track Infrared Sounder) on
NASA’s Suomi NPP satellite, should help us to better quan-
tify methanol emissions as a function of plant functional type
and phenology. These data may also prove valuable for un-
derstanding ecosystem responses to climate variability and
for distinguishing sources types for other species measured
from space, such as CO2, CO, and CH4.

Supplementary material related to this article is
available online athttp://www.atmos-chem-phys.net/14/
2555/2014/acp-14-2555-2014-supplement.pdf.
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